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Iterative EHT calculations are carried out for the positive divacancy in silicon with an improved
set of EHT parameters for silicon. The nearest neighbours of the divacancy are systomatically
displaced in the symmetry-allowed distortion modes until an acceptable agreement between cal-
culated and experimentally derived wave function coefficients is reached for the nearest neighbours.
At this particular distortion, the agreement for eeveral shells of next-nearest neighbours also
appea,rs reasonable.

Iterative ElIT-Rechnungen werden fiir die positive Doppelleerstelle in Silizium mit einem ver-
besserten Satz von DHT-Parametern ausgeftihrt. Die nÊichsten Nachbarn der Doppelleerstelle
werden systematisch in Yerzernrngsmoden, die von der Symmetrie erlaubt sind, versetzt, bis eine
akzeptable tÏbereinstimmung zwischen berechneten und experimentell ermittelten WellenÍunk-
tionskoeffizienten Íiir die náchsten Nachbarn erreicht ist. Bei dieser bestimmten Yerzerrung
scheint die tfboreinstimmung auch fiir mehrere Schalen von iibernèichsten Nachbarn verniinÍtig
zu sein.

L. Introiluction
Silicon is perhaps the most important of the elemental semiconductors, and many
lattice defects in it have been studied both experimentally and theoretically. The
defects can be classified according to their defect states as shallow or deep. For the
shallow centreg (most of the substitutional impurities), a general theory exists in the
form of the effective mass theory pl and its refinements [2].

Most of the lattice defects such as the divacancy &re, however, deep. Contrary to
the monovaaa,ncy, the divacancy is stable at room temperature and thus allows for
extensive experimental studies. The divacancy ca,n be observed in various charge
states; among them, the positive one has, may be, the largest amount of detailed
experimental evidence ava,ilable. fnfrared absorption measurements l3l show that
the singly occupied energy level of the positive divacancy lies 0.25 eV, at most, above
the valence band edge. Hyperfine interactions giving information about the defect
electron wave function have first been observed in EPR, [4] and then, with greater
resolution, in ENDOR, l5l. These experiments reveal that the point symmetry of the
defect is Czr, which is the result of a Jahn-Teller distortion of the environment of
two adjacent, lattice sites having Ds6 slmmetry in the perfect lattice.

A theoretical treatment must therefore take into account the proper charge state
and symmetry of the divacancy. This defect thus constitutes an excellent testing
ground for any theoretical approach that tries to overcome the absence of a general
theory for deep defects.
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Research (USA) under Contract No. 00014-75-C-0919.
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The calculations of Callaway and Hughes in the Green's functions formalism 16] are
for the neutral charge state and do not incorporate any lattice distortions. Lee and
McGill [7] do incorporate lattice distortions in their calculations employing the extend-
ed Hiickel theory (EIIT) [8], which is a semi-empirical, non-self-consistent LCAO
approach. They do not, however, consider distortion modes of E, symmetry as required
by group-theoretical arguments. Rather, they displace the six nearest neighbours
(nn's) according to the ad hoc imposition that one of the three unbroken bonds of
each nn is stretched and the other trro are bent. They place the divacancy in the centre
of a 64 atom unit cell and then repeat this cell periodically. The advantage of this
molecular unit cell approach (MUCA) consists in the absence of perturbing surface
effects.

Our previous divacancy calculations [9] use the same approach (MUCA), but we
investigated systematically the E*-type distortions of the six nn's to achieve a best
possible agreement of the calculated h5ryerfine tensors with experimental ones.
Good agreement was obtained for the first, nn's, while only some tenta,tive assignment
of calculated to measured hyperfine tensors could be made for next nn atoms.

A possible way to improve the theoretical treatment of the divacancy is to incor-
porate charge dependence in the ca,lculations, which would entail an iterative scheme.
This is, however, difficult to do in the MUCA, which is essentially a band structure
scheme with a very large unit cell. The results consequently depend on the k-vect'or.
An additional problem of MUCA has to do with the relative closeness of the defects
in the unit cells. Due to their periodical repetition, one does not really study an
isolated defect, but rather, as it were, a defect superlattice (cf. [0]). We therefore
carried out iterative EIIT calculations for clusters of silicon atoms with two vaca,nt
lattice sites.

In Section 2 we will describe the clusters, and in Section 3 the iterative EHT scheme
together with the parameters that enter into it. Section 4 contains the results, while
possible improvements are discussed in Section 5.

2. Moilel Clusters

In smaller clusters (up to 20 atoms), most of the atoms are essentially surface atoms;
one then really deals with a molecule which has little to do with an extended solid.
Earlier EHT cluster calculations (see, e.g., lf ll) have shown that model clusters
containing 30 atoms, at least, are necessary such that the resulting energy levels
group themselves into what can be considered as a valence and a conduction band
of a solid.

One might then expect that the simulation of a solid improves systematically with
the number of atoms in the cluster. But we did some test calculations showing that,
as the number of atoms in the clusters increases (> 90 atoms), surface states due to
the growing number of broken bonds are beginning to creep into the energy gap,
which leads to spurious results.

Clusters with numbers of atoms ranging between 50 and 80 appear to strike a
reasonable compromise in view of the above considerations. We did most of the
calculations in a 68 atom cluster, which lies in this region of reasonable compromise
and has D36 slmmetry like the undistorted divacancy.

fn keeping with the geometric arra,ngement adopted in previous experimental and
theoretical work, we place the divacancy and nn sites at the positions listed in Table 1.

These coordinates aie given in units of 0.6785 Á, which is one eighth of the non-
primitive f.c.c. lattice constant of silicon. Table 2 shows the symmetry relations
between the six nn atoms under the four operations of the C21 group, namely E
(identity), C, (twofold rotation), o1 (reflection), and i (inversion). Atoms I and 2 form
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Table I Table 2

Symmetry relations between the six
ïIn's under C26 operations

-1t o5

EGI distortion F'Gz distortion
(I.203, 0.602, 0.602) (0.I88, -1.315, -1.3I5)(-0.602,0.602, -I.203) (-1.22r, 0.094, 0.094)

coordinates

divacancy sites I
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-l I c2E
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a mirror-plane shell; they are transformed into themselves. Atoms 3,4,5, and 6 form
a general-class shell. Table 3 lists representative atoms for the remaining mirror-plane
and general-class shells of the model cluster.

We have to consider two distortions that transform according to the E* irreducible
representation of D3a. This follows from two points:

One point is that the uppermost occupied state of the positive divacancy is an Eo
state, and that according to the Hellmann-Fe5rnman theorem [2] the symmetry is
lowered by distortions belonging to irreducible representations contained in the
symmetrized product lEu X Eul which is At* * Eu. Of these two representations, only
E* can lower the symmetry.

The other point concerns the number of linearly independent E* distortions. The
six nn's are capable of 18 normal-mode distortions including translations and rotations.
Among them are three E, modes. Since one of them represents a pure rotation, there
are two E* modes left to consider for a specified orientation of the mirror plane.

The distortions &re shown in X'ig. l. IMe define a distortion mode to have a magnitude
of I if the rms displacement of the six nn's is I À. To be specific, we give the displace-
ment vectors for atoms I and 3 in the same scale as in Table l:

atom
(I) (I, 3,3)
(3) ( -3, - 1, 3)

Table 3

Representative atoms of the shells in the model cluster

mirror-plane shells general-class shells
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Fig. 1. Distortion modes a) EGf
and b) EG2. Broken circles indi-
cate vacant, sites; for the posi-
tions of the six nn's see Table l.
The arrows are for an rms dis-
placement of I Á

/-50

36

3. Iterative EHT

EHT is an approximation to the rigorous Hartree-tr'ock-Roothaan (HFR) theory [13].
fn EIIT, one has to solve the secular equations which have the same form as in HFR,
namely

for the eigenvalues, Ei, and the coefficients, cpi, for the expansion of the eigenfunctions
qr in the atomic basis functions, )(pi

9r,:
p

The overlap integrals Br,- (XplX) 
^r. the same as in the HX'R, theory, but the

Ifamiltonian matrix elements are greatly simplified:

Hor:-Iul lf,:'t,, I
: Sp,Kpn - Qr - I,)12; tt # a .i 

(3)

The .fo's are ionization energies of the atomic states, Ip, of the free atoms and the
constant's K ,, are p'trely empirical parameters. Since the basis functions ,(p are centered
on the atoms, the overlap integrals ,S' incorporate the geometry of the system, in
particular the nn distortions, into the calculations.

As atomic basis states, we take one 3s and three 3p orbitals and represent them as
Slater-type orbitals (STO's), which are characterized by orbital exponents (. Table 4

Table 4
Orbital coefficients 6 and K values

K*, : Kn Ksp

(1)

(2)

reference 6(3s) 6(3p)

Messmer and Watkins [16]
Clementi and Raimondi [I7]
present work

r.87
1.634
1.90

1.60
L.428
L.428

L.7 5 1.313
1.75 L.75
L.t5 L.46
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contains the orbital exponents of the STO's used in our calculations together with the
Ko, vahes.

In the non-iterative scheme, the H r,'s are obviously independent of the net charges
sitting on the atoms. These charges are calculated only afterwards, which can be
done by carrying out a Mulliken charge population analysis [f4]. If an eigenstate gr
carries z1 electrons (na:0,I,or 2), then this charge is distributed over the atomic
basis states such that a state 1, holds a charge qri:

{pi : 
-TLiCpi 4 S rrcri (4)

The total charge qo (expressed in units of lel) sitting on a,n atom is obtained by
summing over all yu's that are centered on that particular atom A, and over all i's:

(5)Lpr:
/lronA i

The next step in the procedure is to make the /r's dependent on qa or rather on its
deviation from the neutral value qf;, namely Lq..a,': Ar - e\. The neutral value qf; is

-(4 + ó), where ó is the number of broken bonds for the particular atom. We have
followed the work of Basch et al. [l5], where the .Iu's àre expanded in powers of Aqa
like

I r(Lqo) - A(p) (Aqo)' + B(w) Lqo + C(p)

The coefficients are (in eV)

(6)

(7)

.a (3s)

A(3p) -- 1.61 ,

J3(3s) - 12.38 ,

-B(3p) - 10.13 ,

C(3s) : L4.95;

C(3p) - 7.77
'With these new values according to (6), one would setup new.I/r,'s (equation (3)), solve
(l) and (2), calculatenewcharges, comp&re with the old ones, and repeat everything
until convergence in the charges is achieved.

Experience shows that it is almost impossible to achieve convergence if simply
the newly calculated I o'a are taken as starting points for the next step. The variations
are too great and often lead to oscillatory behaviour of the charges as the iterations
continue.

This difficulty can be overcome by introducing a damping parameter.X, reducing
the magnitude of the correction due to the newly calculated charges:

IT"*

We chose.?r to be of the order of 0.1 and terminated. the iterations when the difference
between the ga's from successive iterations was less than 0.005 for every atom. Con-
vergence of that sort was generally reached after seven iterations.

'We should remark at the end of this description that an EHT scheme with iter-
ations on charges is still not self-consistent, as Haris has pointed out [8], although
he cannot state, either, whether great practical differences between the results of
a charge-iterative and a self-consistent scheme exist.

4. Results

4.7 Initial caleulations

The interaction between the electron in the
with nuclear spin f is described by the spin

@l Hslil - s.a ..r.

defect state g with spin S and a nucleus
Hamiltonian Ës:

(8)
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A is the hyperfine interaction tensor, which can be decomposed as

L:al+8.
The isotropic part is kno\À/'n as the Fermi contact term with

a - * ns\s*É* lq(O)l' ,

where 0 refers to the position of the nucleus.
The elements of the anisotropic tensor B are

Bu : g|gxfiN @l (\rir, - ,zàu)lrul g) .

They are known as dipole-dipole tensor elements due to the analogous
the interaction of two classical dipoles.

The components of the different hyperfine interaction tensors thus permit the cal-
culation of wave function coefficients of the defect wave function g:

(P - f 
cplp

:
The index ; ,ol, l-r"r th" atoms of a shell indicated by r.

If one comes from the experimental results, the index r just stands for a so far
undefined shell of atoms. We now wa,nt to identify these shells.

An earlier work llgl reporting the rosults of [5] contains experimentally derived
coefficients in the form a2 and B2: (F')'+ (Pu)'+ (P")z These values are given
in Table 5.

It is certainly reasonable to assume that the greatest contributions to the defect
function come from the six nn's of the divaca,ncy. Therefore, we tried to find such
combina.tions of EGI and EG2 distortions that the a2 and B2 values came as close as
possible to the MI and Gl va.lues in Table 4. The shell consisting of atoms 3 through 6
was identified with G2 in [a]. Therefore, also G2 is a candidate for the match as we
will see in Section 4.3. X'or these preliminary calculations we varied EGI between 0.1
and 0.25 and EG2 between 0.05 and 0.15, since our MIICA calcula,tions had yielded
reasonable results in this range. We also used the same EHT parameters, viz. those
proposed by Messmer and Watkins p6l (see Table 4).

Table 5

Experimentally derived wave function coefficients (in o/o) for the defect function of the
positive divacancy [9]

(e)

(10)

(11)

formula for

(r2)

mirror-plane class
d,2 p2

general class
C'

'0f p2

M1
M2
M3
M4
M5
M6
M7

3.6
0.359
0.131
0.076
0.061
0.032
0.02+

27.7
2.738
0.883
0.389
0.508
0.228
0.048

G1
G2
G3
G4
G5
G6
G7
G8
G9
G10
Grl
Gr2

0.54+
0.463
0.246
0.1 70
0.086
0.052
0.043
0.039
0.039
0.020
0.015
0.0r3

1.9r7
0.621
L.592
r.005
0.347
0.334
0.311
0.247
0.242
0.092
0.094
0.080
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The results of these preliminary calculations were not very satisfactory. To be true,
the a2 and B2 values for the six nn's turned out to be in the correct order of magnitude
of the Ml and GI values (Table 5). But the c2's and Bz'r were, in general, too small.

This raised the possibility that the set of EIIT parameters used is not the optimal
one. To see what changes would result from using other sets of available EHT par-
ameters for silicon, the set due to Clementi and Raimondi [7] (see Table 3) was used
in the calculations with the following general results: The c2's were eyen smaller,
i.e. worse as compared with the experimentally derived values, whereas the agree-
ment for the Bz'r became much better.

These findings a,re reasonable considering that a larger orbital exponent renderg
& w&ve function more concentrated around its centre and vice versa. Thus a change
for the f(3s) exponent from 1.87 to 1.634 makes the function more diffuse and reduces
the Fermi contact term which determines c2. Likewise a smaller f(3p) exponent makes
the wave function more extended in space such that the dipole-dipole term increases
and consequently B2, too.

The preliminary results gave therefore the motivation for an attempt to obtain an
improved set of EIIT parameters for silicon. The following part describes this new set,
in which 6(3s) is larger than the value used by Messmer and Watkins and f(3p) is
lower than theirs.

4.2 lrnprooed EHT paranneter set for silicon
If a set of EHT parameters is supposed to yield reasonable results for defect states
in a certain eubstance, then it must also be able to describe the electronic structure
ofthe defect-free substance in an adequate manner.Therefore, theenergy band struc-

ture for the infinite perfect solid should have as many prop-
erties as possible in agreement with experiment and/or
other, more exact, theoretical results.

The EHT parameters were then changed according to
the ideas outlined in Section 4.1. They were also adjusted
so as to yield an indirect band gap in close agreement \Mith
the exeprimental value of I.13 eV [20]. The set of EHT par-
ameters that emerged from these adjustments is listed in
Table 4, and the band structure that \Mas calculated with the
parameters is shown in Eíg.2.

This band structure has an indirect gap of 1.1 eV ; the
minimum of the conduction band at the (c-vector (0.6, 0, 0)
lies, however, some\ryhat off the experimentally determined
minímum position of (0.85, 0, 0) lzll. The valence band
width is 1Z.S eV as compared to thó experimental value of
about, L2.5 eV 122]. Other energy differences have reasonable
values, too. The difference between Tzs,and L, in the cotl-
duction band. is I .4 eY (rf. I.57 eV [23]) and the direct gap
at, L betweer La, and L, is 3.1 eV (.f. 3.4 eV l24l).

Fig. 2. Electronic energy band structure for silicon calculated by
EHT with the parameters listed in Table 4. The energy of the top
of the valence band has been set, to zero

ï
Se
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As for the direct gap at l, it was uncertain for a long time as to whether the lowest
conduction band is 12, or 115, although there was agreement that the bands are quite
close (see, e.9., the various band structure results listed in [25]). Newer experiments
have shown that lru is lower than 12, [26].

Recent theoretical calculations determine the energy differences as lz, - lzs':
: 3.7 eV and |tu - lzr,: 3.1 eV [27]. Our results are in the reverse order, but are
generally in the correct order of magnitude: lz,- lzo,:3.2eY, lru - lru,:
: 3.8 eV. Considering that, after all, EIIT is a relatively simple method, these results
are not bad, which can also be said for the elastic constants. We calculated them fol-
lowing the method described by Watkins and Messmer [28]. The results are listed in
Table 6, together with the constants calculated with the parameters due to Messmer
and W'atkins [16]. Since the value of c* is derived from the bulk modulus B :
: *(r, * 2cp), we rather list the results for B.

Apart, from our q, value, which is slightly worse than the value due to the par-
ameters of Messmer and Watkins, our B and cno values are definitely better.

In summary, the new set of EïIT parameters yields a band structure which still
leaves room for improvement', but which, nevertheless, has better properties than
previously obtained band structures calculated by the same (simple) EET approach.

Table 6

Elastic consta,nts of silicon (in 1011 Pa)

ctt cuB

experimental l2gl
calculated with parameters of Messmer
and Watkins [16]
calculated with present parameters

r.66

0.85
0.79

0.979 0.796

-0.085 0.235
r.16 0.65

4.3 Dhsaeaneg calculations uith the irnprotsed EIIT paranneters

As described in Section 4.1, we first tried to obtain an acceptable agreement between
experimentally derived and calculated a2 and p2 values for the six nn's; in X'ig.3a
and 3b we show how these values change for some variations in the distortion modes
EGI and EG2.

Ideally, for a certain combination of EGI and EG2 distortions, all the calculated
values would coincide with some experimentally derived values represented by hori-
zontal lines in the figures such that, an unambiguous assignment could be made.

This is clearly not the case. Inópection of these figures shows that an improvement
in one value would be accompanied by a deterioration for another value. Also, it does
not appear reasonable to extend the investigations to more EGI values than the ones
used between 0 and 0.2, and other EG2 values than those between 0.05 and 0.1. It
may a,ppeer that smaller EG2 values would improve bh.e Bz values for the atoms (I, 3, 3)
and (-3, -1, 3), but there the ordering of the defect levels in the gap is such that an
Ao state rather than a Bo level would be filled with one electron. This Ao level would
have no s-character in the mirror plane, and hence c2 would vanish for the first nn in
the mirror plane, in particular, which contradicts the experimental results.

A combination of EGI = 0.15 and FGZ = 0.075 appears &s an acceptable com-
promise, which yields reasonable values for all nearest-neighbour atoms; this is, by
the way, also in agreement with our findings based on the MUCA calculations. The
values corresponding to this particular distortion are indicated by crosses in the plots.

As was indicated in Section 4.L, a clear assignment of the (-3, - 1, 3) shell to either
GI or G2 cannot be made, although Gl appears as the better candidate. It is then not
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Fig. 3. a) Defect w&ve function coeffi-
cients for the mirror-plane atom (1, 3, 3).
Here, as in all subsequent figures, the
solid line refers to EG2 : 0.05 and the
dashedline to EG2 - 0.1, while the cros-
ses refer to (8G1, EG2) - (0.15, 0.075).
b) Defect wave function coefficients for
the general-class atom ( -3, - l, 3)

a

possible to find another shell for G2
since for no next, nn shell the a2 and
Bz values are close to the G2 values
at the same time (see below).

For the next nn's, we have plot-
ted only those oP and pz curves
which lie in the order of magni-
tude of the experimentally derived
values of M2, M3, G2, G3, G4, G5,
and G6 (Fig. 4a and 4b). Since, &s
we will see, the assignment, of shells
of atoms to experimentally derived
shells is already getting more and

b more difficult, the problem is practi-
cally impossible to solve for the
remaining shells of atoms.
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The a2 value for the (-1,5,5) mirror-plane atoms lies near the experimental M2
value, while there is a big discrepa,ncy between the calculated and the experimental
B2 values. A closer inspection of the model reveals that the (-1, 5, 5) atoms are not
completely surrounded by other atoms, but rather have one dangling bond, a situation
which always makes the results for such atoms less reliable.

A calculation for the pa,rticular distortion described above was carried out in
a, 98 atom cluster, where the (-1, 5, 5) atoms are not located at the cluster surface.
The results for this calculation are indicated by circles in X'ig. 4a. On the basis of
these results, an assignment of the (-1, 5, 5) atoms to shellM2 orMB appears plausible,
which is in agreement with the reaults of our MUCA calculations. The situation for the
atoms of this particular mirror plane could probably be further cla,rified if more than
just first nn atoms are distorted (see also Section 5).

As for the general-class atoms, the (5, 3, -I) atom shell is a very good candidate
for the G4 shell (see X'ig. 4b). The assignment of the (3, 5, l) atoms to the G3 shell
appears only slightly less certain. Only the values for the (-5,5,1) atoms do not lie
near the experimental values for one and the same shell. For these atoms, however,
the same surface problem exists as for the (-1, 5,5) atoms. The already mentioned
calculation for EGI:0.15 and EG2 :0.075 in the 98 atom cluster then yielded the
values indicated by circles in Fig. 4b, which suggests an assignment of the (-5, 5, I)
atoms to the G5 or G6 sholl. The assignment with G5 was also suggested on the basis
of our MUCA calculations.

As far as the energy levels in the gap a,re concerned, we must remark that the gap
for the 68 atom cluster is larger than the experimental gap. This type of discrepancy
occurs in every calculation with finite clusters (cf., e.g., [II]). This has to do
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Fig. 4. a) Defect wa,ve function coeffi-
cients for the mirror-plane atom (- 1, 5,5)
(for the circles, see text). b) Defect wave
funct'ion coefficients for the general-class
atoms: (a) (5, 3, -l), (b) (3, 5, l), and
(c) (-5, l)

with the general observation that
the conduction band states are re-
produced worse than the valence
band states. The divacancy states
lie, however, close to the valence
band (for the positive charge state)
such that this cautioning remark
should apply to a lesser degree. We
then note that in the 68 atom
cluster the singly occupied Bo state
lies 0.35 eV above a doubly occupied
A* state, which is the uppermost' of
all valence band states. We remem-
ber that the defect level of the
positive divacancy lies 0.25 eV
above the valence band edge, such
that we can speak of a qualitative
agreement, considering the accuracy
of our calculations. This, again,
applies for the particular distortion
of EGI - 0.15 and EG2 - 0.075,
where the unoccupied remainittg
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levels in the gap lie aí O.42 eV (Ao), 0.55 eV (B*), and 0.56 eV (Ar) above the
doubly occupied A* state. All these gap levels display relatively little dispersion over
the range of the distortions considered (see Fig. 5).

Fig. 6 shows size and direction of the p-orbitals on the nn's contributing to the
defect state. These p-orbitals are responsible for the directions of the broken bonds
on the respective atoms.

The position of the nn's are those for the particular distortion, where EGI : 0.15
and EG2 : 0.075. The actual diílplacements are quite small and about the length of
the radius of the circles symbolizing the nn's.
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Fig. 5. The energy gap levels of the positive divacancy (one

electron in the Bo state) calculated for various distortions.
Solid curves: EG2 -_ 0.05; dashedcurves: EG2 : Q.L. Eu:
- 0 refers to the energy of the uppermost of the valence
band states, which is practically constant for the distortions
considered.
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Fig. 6. Contribution of the p-orbi-
tals on the six nn's of the diva-
cancy to the defect state. The size
of the lobes is meant, to indi cate
the strength of the contribution.
The positions of the six nn's
correspond to the distortion
(EGl, EG2) - (0.15, 0.075)

The general-class atoms 3 and 4 (likewise 5 and 6) have moved closer to each other;
pha,se and direction of the orbtials on them indicate bonding combinations. The mir-
ror-plane atoms I and 2 have moved away from each other. Their orbitals do not
point directly to the nearest vacant site, but into a direction shifted towards the
other mirror-plane atom.

These features of the nn's and the defect function derived from our calculation
are in agreement with the microscopic picture for thedivacancydevelopedin [4] on the
basis of EPR measurements. Our calculations thus confirm the model of [a].

ó. Possible Improvements within This Framowork

As we assess the merits of these calculations, we can state with a certain degree of
confidence that the assignment of sqveral shells of divacancyneighbour atoms to experi-
mental hyperfine tensors has become possible for the first time, or has received added
credibility if such an assignment was already done based on our earlier MUCA cal-
cula,tions.

The added credibility stems, for one, from the fact that the EIIT parameters employ-
ed yield an electronic band structure for silicon, which is better in several aspects than
any other band structure calculated so far by EHT, although this band structure
certainly leaves still room for improvement.

Another point is that for the first time we could carry out a calculation explicitly
for the posit'iae divacancy. This is due to our method which iterates on charges. This
makes it worthwhile to consider an analogous treatment of the negative divacancy,
for which information about the defect electron wave function due to ENDOR, exper-
iments is available, too [30].

But for now, we could a,lso try to improve on the present calculations by taking
further allowed types of distortions of divacancy neighborus. 'We remember that, so
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far, only E*-type distortions of the first six nn's were considered. We can still apply
A1*-type distortions, which would not alter the symmetry of the six nn's, buL rather
uniformly enlarge or decrease the geometry of these six atoms. There are two possible
types of A1u distortions, which would entail a considerable amount of calculations if
the two E*'s were combined with them. We did therefore not consider them here; in
addition, our MUCA calculations showed that the A1* distortions caused relatively
minor modifications of the results based on the E, distortions alone.

X'inally, second and further nearest neighbours should be displaced in both Eo- and
A1r-type distortions, because there is no plausible reason why only first nn's Jhould
be distorted. It is, however, easy to see that there is a large number of possible dis-
tortion types to consider, and that there is no simple way how to start a systematic
study of them.
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